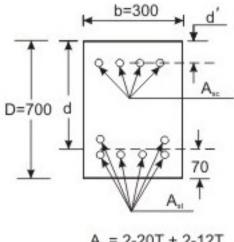
# 4 Doubly Reinforced Beams – Theory and Problems

# Lesson 9 Doubly Reinforced Beams – Theory

# Instructional Objectives:

At the end of this lesson, the student should be able to:

- design the amounts of compression and tensile reinforcement if the *b*, *d*, *d'*,  $f_{ck}$ ,  $f_y$  and  $M_u$  are given, and
- determine the moment of resistance of a beam if *b*, *d*, *d'*, *f<sub>ck</sub>*, *f<sub>y</sub>*, *A<sub>sc</sub>* and *A<sub>st</sub>* are given.


# 4.9.1 Introduction

This lesson illustrates the application of the theory of doubly reinforced beams in solving the two types of problems mentioned in Lesson 8. Both the design and analysis types of problems are solved by (i) direct computation method, and (ii) using tables of SP-16. The step by step solution of the problems will help in understanding the theory of Lesson 8 and its application.

# 4.9.2 Numerical problems

#### 4.9.2.1 Problem 4.1

Design a simply supported beam of effective span 8 m subjected to imposed loads of 35 kN/m. The beam dimensions and other data are: b = 300 mm, D = 700 mm, M 20 concrete, Fe 415 steel (Fig. 4.9.1). Determine  $f_{sc}$  from d'/d as given in Table 4.2 of Lesson 8.



A<sub>sc</sub>= 2-20T + 2-12T A<sub>sc</sub> = 4-25T+ 2-20T

Fig. 4.9.1: Problem 4.1

#### (a) Solution by direct computation method

Dead load of the beam = 0.3 (0.7) (25) = 5.25 kN/m

Imposed loads (given) = 35.00 kN/m

Total loads = 5.25 + 35.00 = 40.25 kN/m

Factored bending moment = (1.5)  $\frac{wl^2}{8} = \frac{(1.5)(40.25)(8)(8)}{8} = 482.96$  kNm

Assuming d' = 70 mm, d = 700 - 70 = 630 mm

$$\frac{x_{u, \text{max}}}{d} = 0.48 \text{ gives } x_{u, \text{max}} = 0.48 (630) = 302.4 \text{ mm}$$

Step 1: Determination of M<sub>u, lim</sub> and A<sub>st, lim</sub>

$$M_{u, \text{ lim}} = 0.36 \left( \frac{x_{u, \text{ max}}}{d} \right) \left( 1 - 0.42 \frac{x_{u, \text{ max}}}{d} \right) b d^2 f_{ck}$$

(4.2)

=  $0.36(0.48) \{1 - 0.42 (0.48)\} (300) (630)^2 (20) (10^{-6}) \text{ kNm}$ 

= 328.55 kNm

$$A_{st, \text{ lim}} = \frac{M_{u, \text{ lim}}}{0.87 f_y (d - 0.42 x_{u, \text{ max}})}$$
(6.8)

So, 
$$A_{st1} = \frac{328.55 (10^6) \text{ Nmm}}{0.87 (415) \{ 630 - 0.42 (0.48) 630 \}} = 1809.14 \text{ mm}^2$$

Step 2: Determination of  $M_{u2}$ ,  $A_{sc}$ ,  $A_{st2}$  and  $A_{st}$ 

(Please refer to Eqs. 4.1, 4.4, 4.6 and 4.7 of Lesson 8.)

 $M_{u2} = M_u - M_{u,lim} = 482.96 - 328.55 = 154.41 \text{ kNm}$ 

Here, d'/d = 70/630 = 0.11

From Table 4.2 of Lesson 8, by linear interpolation, we get,

$$f_{sc} = 353 - \frac{353 - 342}{5} = 350.8 \text{ N/mm}^2$$

$$A_{sc} = \frac{M_{u2}}{(f_{sc} - f_{cc}) (d - d')} = \frac{154.41(10^6) \text{ Nmm}}{\{350.8 - 0.446(20)\}(630 - 70) \text{ N/mm}} = 806.517 \text{ mm}^2$$

$$A_{st2} = \frac{A_{sc} (f_{sc} - f_{cc})}{0.87 f_{y}} = \frac{806.517 (350.8 - 8.92)}{(0.87) (415)} = 763.694 \text{ mm}^{2}$$

 $A_{st} = A_{st1} + A_{st2} = 1809.14 + 783.621 = 2572.834 \text{ mm}^2$ 

Step 3: Check for minimum and maximum tension and compression steel.

(vide sec.4.8.5 of Lesson 8)

(i) In compression:

(a) Minimum 
$$A_{sc} = \frac{0.2}{100} (300) (700) = 420 \text{ mm}^2$$

(b) Maximum 
$$A_{sc} = \frac{4}{100} (300) (700) = 8400 \text{ mm}^2$$

Thus,  $420 \text{ mm}^2 < 806.517 \text{ mm}^2 < 8400 \text{ mm}^2$ . Hence, o.k.

(ii) In tension:

(a) Minimum 
$$A_{st} = \frac{0.85 \ b \ d}{f_v} \frac{0.85 (300) (630)}{415} = 387.1 \ \text{mm}^2$$

(b) Maximum 
$$A_{st} = \frac{4}{100} (300) (700) = 8400 \text{ mm}^2$$

Here,  $387.1 \text{ mm}^2 < 2572.834 \text{ mm}^2 < 8400 \text{ mm}^2$ . Hence, o.k.

Step 4: Selection of bar diameter and numbers.

(i) for  $A_{sc}$ : Provide 2-20 T + 2-12 T (= 628 + 226 = 854 mm<sup>2</sup>)

(ii) for 
$$A_{st}$$
. Provide 4-25 T + 2-20 T (= 1963 + 628 = 2591 mm<sup>2</sup>)

It may be noted that  $A_{st}$  is provided in two layers in order to provide adequate space for concreting around reinforcement. Also the centroid of the tensile bars is at 70 mm from bottom (Fig. 4.9.1).

#### (b) Solution by use of table of SP-16

For this problem, 
$$\frac{M_u}{b d^2} = \frac{482.96 (10^6)}{300 (630)^2} = 4.056$$
 and  $d'/d = \frac{70}{630} = 0.11$ .

Table 50 of SP-16 gives  $p_t$  and  $p_c$  for  $\frac{M_u}{b d^2} = 4$  and 4.1 and d'/d = 0.1 and 0.15. The required  $p_t$  and  $p_c$  are determined by linear interpolation. The values are presented in Table 4.3 to get the final  $p_t$  and  $p_c$  of this problem.

| $M_{u}$           |       | d'/d = 0.1                | d'/d = 0.15 | d'/d = 0.11                                 |
|-------------------|-------|---------------------------|-------------|---------------------------------------------|
| $\frac{a}{b d^2}$ |       |                           |             |                                             |
| 4.0               | $p_t$ | 1.337                     | 1.360       | $1.337 + \frac{0.023(0.01)}{0.05} = 1.342$  |
|                   | $p_c$ | 0.401                     | 0.437       | $0.433 + \frac{0.036(0.01)}{0.05} = 0.408$  |
|                   | $p_t$ | 1.368                     | 1.392       | $1.368 + \frac{0.024(0.01)}{0.05} = 1.373$  |
| 4.1               | $p_c$ | 0.433                     | 0.472       | $0.433 + \frac{0.039(0.01)}{0.05} = 0.441$  |
| 4.056             | $p_t$ | Not<br>Applicable<br>(NA) | NA          | $1.342 + \frac{0.031(0.056)}{0.1} = 1.3594$ |
|                   | $p_c$ | NA                        | NA          | $0.408 + \frac{0.033(0.056)}{0.1} = 0.426$  |

#### Table 4.3 Calculation of $p_t$ and $p_c$

So, 
$$A_{st} = \frac{1.3594(300)(630)}{100} = 2569.26 \text{ m}^2$$

and  $A_{sc} = \frac{0.426(300)(630)}{100} = 805.14 \text{ mm}^2$ 

These values are close to those obtained by direct computation method where  $A_{st} = 2572.834 \text{ mm}^2$  and  $A_{sc} = 806.517 \text{ mm}^2$ . Thus, by using table of SP-16 we

get the reinforcement very close to that of direct computation method. Hence, provide

- (i) for  $A_{sc}$ : 2-20 T + 2-12 T (= 628 + 226 = 854 mm<sup>2</sup>)
- (ii) for  $A_{st}$ : 4-25 T + 2-20 T (= 1963 + 628 = 2591 mm<sup>2</sup>)

#### 4.9.2.2 Problem 4.2

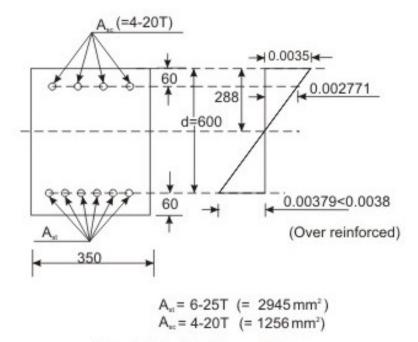



Fig. 4.9.2: Problem 4.2

Determine the ultimate moment capacity of the doubly reinforced beam of b = 350 mm, d' = 60 mm, d = 600 mm,  $A_{st} = 2945 \text{ mm}^2$  (6-25 T),  $A_{sc} = 1256 \text{ mm}^2$  (4-20 T), using M 20 and Fe 415 (Fig.4.9.2). Use direct computation method only.

#### Solution by direct computation method

Step 1: To check if the beam is under-reinforced or over-reinforced.

$$x_{u,\max} = 0.48(600) = 288 \text{ mm}$$
  
 $\varepsilon_{st} = \frac{\varepsilon_c (d - x_{u,\max})}{x_{u,\max}} = \frac{0.0035(600 - 288)}{288} = 0.00379$ 

Yield strain of Fe 415 = 
$$\frac{f_y}{1.15(E_s)}$$
 + 0.002 =  $\frac{415}{(1.15)(2)(10^5)}$  + 0.002  
= 0.0038 > 0.00379.

Hence, the beam is over-reinforced.

Step 2: To determine  $M_{u,lim}$  and  $A_{st,lim}$ (vide Eq. 4.2 of Lesson 8 and Table 3.1 of Lesson 5)

$$M_{u, \lim} = 0.36 \left(\frac{x_{u, \max}}{d}\right) \left(1 - 0.42 \frac{x_{u, \max}}{d}\right) b d^2 f_{ck}$$
  
= 0.36 (0.48) {1 - 0.42 (0.48)} (350) (600)<sup>2</sup> (20) (10<sup>-6</sup>) kNm  
= 347.67 kNm

From Table 3.1 of Lesson 5, for  $f_{ck} = 20 \text{ N/mm}^2$  and  $f_y = 415 \text{ N/mm}^2$ ,

$$A_{st,\text{lim}} = \frac{0.96(350)(600)}{100} = 2016 \text{ mm}^2$$

Step 3: To determine  $A_{st2}$  and  $A_{sc}$ (vide Eqs.4.7 and 4.6 of Lesson 8)

$$A_{st2} = A_{st} - A_{st, lim} = 2945 - 2016 = 929 \text{ mm}^2$$

The required  $A_{sc}$  will have the compression force equal to the tensile force as given by 929 mm<sup>2</sup> of  $A_{st2}$ .

So, 
$$A_{sc} = \frac{A_{st2} (0.87 f_y)}{(f_{sc} - f_{cc})}$$

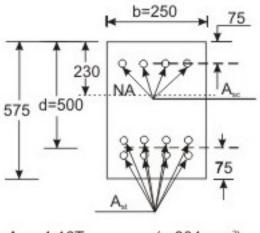
For  $f_{sc}$  let us calculate  $\varepsilon_{sc}$ : (vide Eq. 4.9 of Lesson 8)

$$\varepsilon_{sc} = \frac{0.0035 \left( x_{u, \max} - d' \right)}{x_{u, \max}} = \frac{0.0035 \left( 288 - 60 \right)}{288} = 0.002771$$

Table 4.1 of Lesson 8 gives:

$$f_{sc} = 351.8 + \frac{(360.9 - 351.8)(0.002771 - 0.002760)}{(0.00380 - 0.00276)} = 351.896 \text{ N/mm}^2$$

So, 
$$A_{sc} = \frac{929 (0.87) (415)}{\{351.89 - 0.446 (20)\}} = 977.956 \text{ mm}^2$$


Step 4: To determine  $M_{u2}$ ,  $M_u$  and  $A_{st}$ (Please refer to Eqs. 4.4 and 4.1 of Lesson 8)

$$M_{u2} = A_{sc} (f_{sc} - f_{cc}) (d - d')$$
  
= 977.956 {351.896 - 0.446 (20)} (600 - 60) (10<sup>-6</sup>) kNm  
= 181.12 kNm  
$$M_{u} = M_{u, lim} + M_{u2} = 347.67 + 181.12 = 528.79 kNm$$

Therefore, with  $A_{st} = A_{st, lim} + A_{st2} = 2016 + 929 = 2945 \text{ mm}^2$  the required  $A_{sc} = 977.956 \text{ mm}^2$  (much less than the provided 1256 mm<sup>2</sup>). Hence, o.k.

### 4.9.3 Practice Questions and Problems with Answers

**Q.1:** Design a doubly reinforced beam (Fig. 4.9.3) to resist  $M_u = 375$  kNm when b = 250 mm, d = 500 mm, d' = 75 mm,  $f_{ck} = 30$  N/mm<sup>2</sup> and  $f_y = 500$  N/mm<sup>2</sup>, using (i) direct computation method and (ii) using table of SP-16.



 $A_{sc} = 4-16T$  (= 804 mm<sup>2</sup>)  $A_{st} = 6-20T + 2-12T$  (= 2110 mm<sup>2</sup>)

Fig. 4.9.3: Problem of Q 1

#### A.1: (A) Solution by direct computation method:

From the given data

$$M_{u, lim} = 0.36 \left(\frac{x_{u, \max}}{d}\right) \left(1 - 0.42 \frac{x_{u, \max}}{d}\right) b d^2 f_{ck}$$
  
= 0.36 (0.46) {1 - 0.42 (0.46)} (250) (500)<sup>2</sup> (30) (10<sup>-6</sup>) kNm  
= 250.51 kNm

Using the value of  $p_t = 1.13$  from Table 3.1 of Lesson 5 for  $f_{ck} = 30$  N/mm<sup>2</sup> and  $f_y = 500$  N/mm<sup>2</sup>,

$$A_{st, \text{ lim}} = \frac{1.13 \, (250) \, (500)}{100} = 1412.5 \, \text{mm}^2$$

 $M_{u2} = 375 - 250.51 = 124.49$  kNm

From Table 4.2 of Lesson 8, for  $d'\!/d$  = 75/500 = 0.15 and  $f_y$  = 500 N/mm^2 , we get  $f_{sc}$  = 395 N/mm^2

$$A_{sc} = \frac{M_{u2}}{(f_{sc} - f_{cc}) (d - d')} = \frac{124.49 (10^6)}{\{395 - 0.446 (30)\} (500 - 75)} = 767.56 \text{ mm}^2$$

$$A_{st2} = \frac{A_{sc} (f_{sc} - f_{cc})}{0.87 f_{y}} = \frac{767.56 \{395 - 0.446 (30)\}}{0.87 (500)} = 673.37 \text{ mm}^{2}$$

$$A_{st} = A_{st,\text{lim}} + A_{st2} = 1412.5 + 673.37 = 2085.87 \text{ mm}^2$$

Alternatively: (use of Table 4.1 of Lesson 8 to determine  $f_{sc}$  from  $\varepsilon_{sc}$ )

 $x_{u, max} = 0.46 (500) = 230 \text{ mm}$ 

$$\varepsilon_{sc} = \frac{0.0035(230-75)}{230} = \frac{0.0035(155)}{230} = 0.002359$$

From Table 4.1

$$f_{sc} = 391.3 + \frac{(413.0 - 391.3)(0.002359 - 0.00226)}{(0.00277 - 0.00226)} = 395.512 \text{ N/mm}^2$$

$$A_{sc} = \frac{M_{u2}}{(f_{sc} - f_{cc}) (d - d')} = \frac{124.49 (10^6)}{\{395.512 - 0.446 (30)\} (500 - 75)} = 766.53 \text{ mm}^2$$

$$A_{st2} = \frac{A_{sc} (f_{sc} - f_{cc})}{0.87 f_{y}} = \frac{766.53 (382.132)}{0.87 (500)} = 673.369 \text{ mm}^{2}$$

 $A_{st} = A_{st, \lim} + A_{st2} = 1412.5 + 673.369 = 2085.869 \text{ mm}^2$ 

Check for minimum and maximum  $A_{st}$  and  $A_{sc}$ 

(i) Minimum 
$$A_{st} = \frac{0.85 \ b \ d}{f_y} \frac{0.85 (250) (500)}{500} = 212.5 \ \text{mm}^2$$

(ii) Maximum 
$$A_{st} = 0.04 \, b \, D = 0.04 \, (250) \, (575) = 5750 \, \text{mm}^2$$

(iii) Minimum 
$$A_{st} = \frac{0.2 \ b \ D}{100} \quad \frac{0.2 \ (250) \ (575)}{100} = 287.5 \ \text{mm}^2$$

(iv) Maximum 
$$A_{st} = 0.04 b D = 0.04 (250) (575) = 5750 \text{ mm}^2$$

Hence, the areas of reinforcement satisfy the requirements.

So, provide (i)  $6-20 \text{ T} + 2-12 \text{ T} = 1885 + 226 = 2111 \text{ mm}^2$  for  $A_{st}$ 

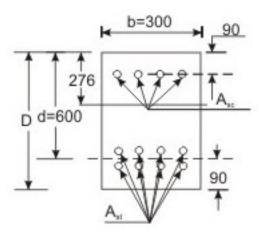
(ii) 4-16 T = 804 mm<sup>2</sup> for 
$$A_{sc}$$

#### (B) Solution by use of table of SP-16

From the given data, we have

$$\frac{M_u}{b\,d^2} = \frac{375\,(10^6)}{250\,(500)^2} = 6.0$$

d'/d = 75/500 = 0.15


Table 56 of SP-16 gives:  $p_t = 1.676$  and  $p_c = 0.619$ 

So, 
$$A_{st} = \frac{(1.676)(250)(500)}{100} = 2095 \text{ mm}^2$$

and 
$$A_{sc} = \frac{(0.619 (250) (500)}{100} = 773.75 \text{ mm}^2$$

These values are close to those of (A). Hence, provide 6-20 T + 2-12 T as  $A_{st}$  and 4-16 T as  $A_{sc}$ .

**Q.2:** Determine the moment of resistance of the doubly reinforced beam (Fig. 4.9.4) with b = 300 mm, d = 600 mm, d' = 90 mm,  $f_{ck} = 30$  N/mm<sup>2</sup>,  $f_y = 500$  N/mm<sup>2</sup>,  $A_{sc} = 2236$  mm<sup>2</sup> (2-32 T + 2-20 T), and  $A_{st} = 4021$  mm<sup>2</sup> (4-32 T + 4-16 T). Use (i) direct computation method and (ii) tables of SP-16.



 $A_{sc} = 2-32T + 2-20T (= 2236 mm^2)$  $A_{st} = 4-32T + 4-16T (= 4021 mm^2)$ 

Fig. 4.9.4: Problem of Q 2

#### A.2: (i) Solution by direct computation method:

 $x_{u, max} = 0.46 (600) = 276 \text{ mm}$ 

$$\varepsilon_{st} = \frac{0.0035(600 - 276)}{276} = 0.0041086$$

 $\varepsilon_{yield}$  = 0.00417. So  $\varepsilon_{st}$  <  $\varepsilon_{yield}$  i.e. the beam is over-reinforced.

For d'/d = 0.15 and  $f_y = 500$  N/mm<sup>2</sup>, Table 4.2 of Lesson 8 gives:  $f_{sc} = 395$  N/mm<sup>2</sup> and with  $f_{ck} = 30$  N/mm<sup>2</sup>, Table 3.1 of Lesson 5 gives  $p_{t, lim} = 1.13$ .

$$A_{st,\text{lim}} = \frac{1.13(300)(600)}{100} = 2034 \text{ mm}^2$$

$$M_{u,lim} = 0.36 \left(\frac{x_{u,max}}{d}\right) \left(1 - 0.42 \frac{x_{u,max}}{d}\right) b d^2 f_{ck}$$
  
= 0.36 (0.46) {1 - 0.42 (0.46)} (300) (600)<sup>2</sup> (30) (10<sup>-6</sup>) kNm  
= 432.88 kNm

 $A_{st2} = 4021 - 2034 = 1987 \text{ mm}^2$ 

$$(A_{sc})_{required} = \frac{A_{st2} (0.87) f_y}{(f_{sc} - f_{cc})} = \frac{1987 (0.87) (500)}{(395 - 0.446 (30))} = 2264.94 \text{ mm}^2 > 2236 \text{ mm}^2$$

So,  $A_{st2}$  of 1987 mm<sup>2</sup> is not fully used. Let us determine  $A_{st2}$  required when  $A_{sc} = 2236$  mm<sup>2</sup>.

$$A_{st2} = \frac{A_{sc} (f_{sc} - f_{cc})}{0.87 f_{y}} = \frac{2236 \{395 - 0.446 (30)\}}{(0.87) (500)} = 1961.61 \text{ mm}^{2}$$

 $A_{st} = A_{st, lim} + A_{st2} = 2034 + 1961.61 = 3995.61 \text{ mm}^2 < 4021 \text{ mm}^2.$ 

Hence, o.k.

With 
$$A_{st2} = 1961.61 \text{ mm}^2$$
,  $M_{u2} = A_{st2} (0.87 f_y) (d - d')$   
= 1961.61 (0.87) (500) (600 - 75) (10<sup>-6</sup>) kNm = 447.98268 kNm  
Again, when  $A_{sc} = 2236 \text{ mm}^2$  (as provided)

$$M_{u2} = A_{sc} (f_{sc} - f_{cc}) (d - d')$$

= 2236 {395 - 0.446 (30)} (600 - 75) ( $10^{-6}$ ) kNm = 447.9837 kNm

 $M_u = M_{u, lim} + M_{u2} = 432.88 + 447.98$  ( $M_{u2}$  is taken the lower of the two)

= 880.86 kNm

Hence, the moment of resistance of the beam is 880.86 kNm.

Alternatively  $f_{sc}$  can be determined from Table 4.1 of Lesson 8.

Using the following from the above:

 $x_{u, max} = 276 \text{ mm}$ 

 $A_{st,lim} = 2034 \text{ mm}^2$ 

 $M_{u,lim} = 432.88 \text{ kNm}$ 

 $A_{st2} = 1987 \text{ mm}^2$ 

To find (A<sub>sc</sub>)<sub>required</sub>

$$\varepsilon_{st} = \frac{0.0035 \left(276 - 90\right)}{276} = 0.00236$$

Table 4.1 of Lesson 8 gives:

 $f_{sc} = 391.3 + \frac{(413 - 391.3)(0.00236 - 0.00226)}{(0.00277 - 0.00226)} = 395.55 \text{ N/mm}^2$ 

$$(A_{sc})_{required} = \frac{A_{st2} (0.87) f_y}{(f_{sc} - f_{cc})} = \frac{1987 (0.87) (500)}{(395.55 - 0.446 (30))}$$

$$= 2261.68 \text{ mm}^2 > 2236 \text{ mm}^2$$

So, it is not o.k.

Let us determine  $A_{st2}$  required when  $A_{sc} = 2236 \text{ mm}^2$ .

$$A_{st2} = \frac{A_{sc} (f_{sc} - f_{cc})}{0.87 f_{y}} = \frac{2236 \{395.55 - 0.446 (30)\}}{(0.87) (500)} = 1964.44 \text{ mm}^{2}$$

 $A_{st} = A_{st, lim} + A_{st2} = 2034 + 1964.44 = 3998.44 \text{ mm}^2 < 4021 \text{ mm}^2.$ So, o.k.

$$M_{u2}$$
 (when  $A_{st2} = 1964.44 \text{ mm}^2$ ) =  $A_{st2}$  (0.87  $f_y$ ) (d - d')

= 1964.44 (0.87) (500) (600 - 75) (10<sup>-6</sup>) kNm

= 448.63 kNm

For  $A_{sc} = 2236 \text{ mm}^2$ ,

$$M_{u2} = A_{sc} (f_{sc} - f_{cc}) (d - d')$$

- = 2236 {(395.55 0.446 (30)} (600 75) (10<sup>-6</sup>) kNm
- = 2236 (382.17) (525) (10<sup>-6</sup>) kNm

= 448.63 kNm

Both the  $M_{u2}$  values are the same. So,

$$M_u = M_{u,lim} + M_{u2} = 432.88 + 448.63$$
  
= 881.51 kNm

Here, the  $M_u = 881.51$  kNm.

#### (ii) Solution by using table of SP-16

From the given data:

$$p_{t} = \frac{4021(100)}{300(600)} = 2.234$$
$$p_{c} = \frac{2236(100)}{300(600)} = 1.242$$

d'/d = 0.15

Table 56 of SP-16 is used first considering d'/d = 0.15 and  $p_t = 2.234$ , and secondly, considering d'/d = 0.15 and  $p_c = 1.242$ . The calculated values of  $p_c$  and  $M_u/bd^2$  for the first and  $p_t$  and  $M_u/bd^2$  for the second cases are presented below separately. Linear interpolation has been done.

(i) When d'/d = 0.15 and  $p_t = 2.234$ 

$$\frac{M_u}{b d^2} = 8.00 + \frac{(8.1 - 8.0)(2.234 - 2.218)}{(2.245 - 2.218)} = 8.06$$

$$p_c = 1.235 + \frac{(1.266 - 1.235)(0.016)}{(0.027)} = 1.253 > 1.242$$

So, this is not possible.

(ii) When d'/d = 0.15 and  $p_c = 1.242$ 

$$\frac{M_u}{b\,d^2} = 8.00 + \frac{(8.1 - 8.0)\,(1.242 - 1.235)}{(1.266 - 1.235)} = 8.022$$

$$p_t = 2.218 + \frac{(2.245 - 2.218)(1.242 - 1.235)}{(1.266 - 1.235)} = 2.224 < 2.234$$

So,  $M_u = 8.022 (300) (600)^2 (10^{-6}) = 866.376$  kNm.

Hence, o.k.

#### 4.9.4 References

- 1. Reinforced Concrete Limit State Design, 6<sup>th</sup> Edition, by Ashok K. Jain, Nem Chand & Bros, Roorkee, 2002.
- Limit State Design of Reinforced Concrete, 2<sup>nd</sup> Edition, by P.C.Varghese, Prentice-Hall of India Pvt. Ltd., New Delhi, 2002.
- 3. Advanced Reinforced Concrete Design, by P.C.Varghese, Prentice-Hall of India Pvt. Ltd., New Delhi, 2001.
- Reinforced Concrete Design, 2<sup>nd</sup> Edition, by S.Unnikrishna Pillai and Devdas Menon, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2003.

- 5. Limit State Design of Reinforced Concrete Structures, by P.Dayaratnam, Oxford & I.B.H. Publishing Company Pvt. Ltd., New Delhi, 2004.
- 6. Reinforced Concrete Design, 1<sup>st</sup> Revised Edition, by S.N.Sinha, Tata McGraw-Hill Publishing Company. New Delhi, 1990.
- 7. Reinforced Concrete, 6<sup>th</sup> Edition, by S.K.Mallick and A.P.Gupta, Oxford & IBH Publishing Co. Pvt. Ltd. New Delhi, 1996.
- 8. Behaviour, Analysis & Design of Reinforced Concrete Structural Elements, by I.C.Syal and R.K.Ummat, A.H.Wheeler & Co. Ltd., Allahabad, 1989.
- 9. Reinforced Concrete Structures, 3<sup>rd</sup> Edition, by I.C.Syal and A.K.Goel, A.H.Wheeler & Co. Ltd., Allahabad, 1992.
- 10. Textbook of R.C.C, by G.S.Birdie and J.S.Birdie, Wiley Eastern Limited, New Delhi, 1993.
- 11. Design of Concrete Structures, 13<sup>th</sup> Edition, by Arthur H. Nilson, David Darwin and Charles W. Dolan, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2004.
- 12. Concrete Technology, by A.M.Neville and J.J.Brooks, ELBS with Longman, 1994.
- 13. Properties of Concrete, 4<sup>th</sup> Edition, 1<sup>st</sup> Indian reprint, by A.M.Neville, Longman, 2000.
- 14. Reinforced Concrete Designer's Handbook, 10<sup>th</sup> Edition, by C.E.Reynolds and J.C.Steedman, E & FN SPON, London, 1997.
- 15. Indian Standard Plain and Reinforced Concrete Code of Practice (4<sup>th</sup> Revision), IS 456: 2000, BIS, New Delhi.
- 16. Design Aids for Reinforced Concrete to IS: 456 1978, BIS, New Delhi.

# 4.9.5 Test 9 with Solutions

Maximum Marks = 50, Maximum Time = 30 minutes

Answer all questions.

- **TQ.1:** Design a simply supported beam of effective span 8 m subjected to imposed loads of 35 kN/m. The beam dimensions and other data are: b = 300 mm, D = 700 mm, M 20 concrete, Fe 415 steel (Fig. 4.9.1). Determine  $f_{sc}$  from strain  $\varepsilon_{sc}$  as given in Table 4.1 of Lesson 8.
- **A.TQ.1:** This problem is the same as Problem 4.1 in sec. 4.9.2.1 except that here the  $f_{sc}$  is to be calculated using Table 4.1 instead of Table 4.2.
- **Step 1:** Here, the Step 1 will remain the same as that of Problem 4.1.

Step 2: Determination of *Mu2*, *Asc*, *Ast2* and *Ast* 

 $M_{u2} = M_u - M_{u, \text{ lim}} = 482.96 - 328.55 = 154.41 \text{ kNm}$ 

From strain triangle: (Fig. 4.8.2 of Lesson 8)

$$\varepsilon_{sc} = \frac{0.0035\,(302.4-70)}{302.4} = 0.00269$$

 $f_{sc}$  (from Table 4.1 of Lesson 8) = 342.8 +  $\frac{(351.8 - 342.8)}{(0.00276 - 0.00241)}$  (0.00269 - 0.00241)

$$= 350 \text{ N/mm}^2$$

$$A_{sc} = \frac{M_{u2}}{(f_{sc} - f_{cc}) (d - d')} = \frac{154.41(10^6)}{(350 - 0.446(20))(630 - 70) \text{ N/mm}} = 808.41 \text{ mm}^2$$
$$A_{st2} = \frac{A_{sc} (f_{sc} - f_{cc})}{0.87 f_y} = \frac{808.41(341.08)}{(0.87)(415)} = 763.696 \text{ mm}^2$$
$$A_{st} = A_{st1} + A_{st2} = 1809.14 + 763.696 = 2572.836 \text{ mm}^2$$
$$A_{sc} = 808.41 \text{ mm}^2$$

Steps 3 & 4 will also remain the same as those of Problem 4.1.

Hence, provide 2-20 T + 2-12 T (854 mm<sup>2</sup>) as  $A_{sc}$  and 4-25 T + 2-20 T (2591 mm<sup>2</sup>) as  $A_{st}$ .

**TQ.2:** Determine the ultimate moment capacity of the doubly reinforced beam of b = 350 mm, d' = 60 mm, d = 600 mm,  $A_{st} = 2945 \text{ mm}^2$  (6-25 T),  $A_{sc} = 1256 \text{ mm}^2$  (4-20 T), using M 20 and Fe 415 (Fig. 4.9.2). Use table of SP-16 only.

A.TQ.2: Solution by using table of SP-16

This problem is the same as that of Problem 4.2 of sec. 4.9.2.2, which has been solved by direct computation method. Here, the same is to be solved by using SP-16.

The needed parameters are:

$$d'/d = 60/600 = 0.1$$

$$p_t = \frac{A_{st} (100)}{b d} = \frac{2945 (100)}{350(600)} = 1.402$$

$$p_c = \frac{A_{sc} (100)}{b d} = \frac{1256 (100)}{350 (600)} = 0.5981$$

Here, we need to use Table 50 for  $f_{ck} = 20 \text{ N/mm}^2$  and  $f_y = 415 \text{ N/mm}^2$ . The table gives values of  $M_u/bd^2$  for (I) d'/d and  $p_t$  and (ii) d'/d and  $p_c$ . So, we will consider both the possibilities and determine  $M_u$ .

(i) Considering Table 50 of SP-16 when d'/d = 0.1 and  $p_t = 1.402$ :

Interpolating the values of  $M_u/bd^2$  at  $p_t = 1.399$  and 1.429, we get

$$\left(\frac{M_u}{b\,d^2}\right)_{p_t=1.402} = 4.2 + \frac{(4.3 - 4.2)\,(1.402 - 1.399)}{(1.429 - 1.399)} = 4.21$$

the corresponding  $(p_c)_{p_t=1.402} = 0.466 + \frac{(0.498 - 0.466)(1.402 - 1.399)}{(1.429 - 1.399)} = 0.4692$ 

But,  $p_c$  provided is 0.5981 indicates that extra compression reinforcement has been used.

So, we get

 $M_u = 4.21 \ b \ d^2 = (4.21) (350) (600)^2 (10^{-6}) = 530.46 \ \text{kNm}$  when  $A_{st} = 2945 \ \text{mm}^2$  and  $A_{sc} = 985.32 \ \text{mm}^2$ , i.e. 270.69  $\text{mm}^2$  (= 1256 - 985.32) of compression steel is extra.

(ii) Considering d'/d = 0.1 and  $p_c = 0.5981$ , we get by linear interpolation

$$\left(\frac{M_u}{b\,d^2}\right)_{p_c=0.5981} = 4.6 + \frac{(4.7 - 4.6)\,(0.5981 - 0.595)}{(0.628 - 0.595)} = 4.61$$

the corresponding  $p_t$  is:

$$(p_t)_{p_c=0.5981} = 1.522 + \frac{(1.533 - 1.522)(0.5981 - 0.595)}{(0.628 - 0.595)} = 1.5231$$

The provided  $p_t = 1.402$  indicates that the tension steel is insufficient by 254.31 mm<sup>2</sup> as shown below:

Amount of additional  $A_{st}$  still required =

$$\frac{(1.5231 - 1.402)(350)(600)}{100} = 254.31 \text{ mm}^2$$

If this additional steel is provided, then the  $M_u$  of this beam becomes:

 $M_u = 4.61 \ b \ d^2 = 4.61 \ (350) \ (600)^2 \ (10^{-6}) \ \text{kNm} = 580.86 \ \text{kNm}$ 

The above two results show that the moment of resistance of this beam is the lower of the two. So,  $M_u = 530.46$  kNm. By direct computation the  $M_u = 528.79$  kNm. The two results are in good agreement.

# 4.9.6 Summary of this Lesson

This lesson presents solutions of four numerical problems covering both design and analysis types. These problems are solved by two methods: (i) direct computation method and (ii) using table of SP-16. Two problems are illustrated in the lesson and the other two are given in the practice problem and test of this lesson. The solutions will help in understanding the step by step application of the theory of doubly reinforced beams given in Lesson 8.